Optimization of Laser Marking Parameters on SKD-11 Tool Steel to Enhance Surface Hygiene and Safety in Medical Device Manufacturing
DOI:
https://doi.org/10.55642/phasij.v5i02.1159Keywords:
Laser marking, SKD-11, surface roughness, medical device manufacturing, hygieneAbstract
Laser marking is essential in medical device manufacturing to ensure permanent identification and traceability while maintaining hygienic surface quality. However, improper parameter selection may increase surface roughness, reducing readability and risking microbial retention. This study aims to optimize laser marking parameters on SKD-11 tool steel to improve marking clarity without compromising surface integrity. Six combinations of laser speed, power, and frequency were tested. Surface roughness was measured using a YRT200 (Ra) tester, and marking quality was visually assessed. The optimal performance was achieved at 150 mm/s, 100 W, and 54 kHz, producing clear engraving with a moderate roughness of 29.8 μm. These results indicate that appropriate parameter optimization can balance clarity and hygienic surface characteristics, highlighting its importance for reliable and safe labeling in industrial and medical applications.
References
Aizawa, T., Funazuka, T., & Shiratori, T. (2022). Near-net forging of titanium and titanium alloys with low friction and low work hardening by using carbon-supersaturated SKD11 dies. Lubricants, 10(9), 203. https://doi.org/10.3390/lubricants10090203
Al-Ahmad, A., Pelz, K., & Wiedmann-Al-Ahmad, M. (2023). The influence of surface roughness on bacterial adhesion and biofilm formation on medical alloys: A systematic review. Frontiers in Cellular and Infection Microbiology, 13, 1159824. https://doi.org/10.3389/fcimb.2023.1159824
Balchev, I., Atanasov, A., Lengerov, A., & Lazov, L. (2021). Investigation of the influence of the scanning speed and step in laser marking and engraving of aluminum. Journal of Physics: Conference Series, 1859(1), 012002. https://doi.org/10.1088/1742-6596/1859/1/012002
Barão, V. A. R., Mathew, M. T., Assunção, W. G., & Sukotjo, C. (2023). The role of surface characteristics and roughness on microbial adhesion and corrosion in biomedical alloys. Journal of the Mechanical Behavior of Biomedical Materials, 145, 106033. https://doi.org/10.1016/j.jmbbm.2023.106033
Chen, C., Wang, J., Evans, A., & O’Hare, D. (2024). Boosting NIR laser marking efficiency of transparent epoxy using a layered double hydroxide. ACS Applied Polymer Materials, 6(14), 8679–8686. https://doi.org/10.1021/acsapm.4c01815
Costa, L., Gomes, L. C., & Simões, M. (2022). The influence of surface roughness on biofilm formation and cleaning of stainless steel used in food and medical industries. Biofouling, 38(10), 1134–1148. https://doi.org/10.1080/08927014.2022.2130408
D’Ercole, S., Di Giulio, M., & Traini, T. (2023). Effect of laser-textured titanium surfaces on bacterial colonization and biofilm formation. Materials, 16(2), 475. https://doi.org/10.3390/ma16020475
Farias, M. A., de Souza, L. P., & Pereira, A. C. (2022). Impact of surface finishing and roughness on bacterial adhesion and cleaning performance of stainless steel for food and medical use. Colloids and Surfaces B: Biointerfaces, 219, 112864. https://doi.org/10.1016/j.colsurfb.2022.112864
Gnilitskyi, I., Rymar, S., Iungin, O., Vyshnevskyy, O., Parisse, P., Potters, G., Zayats, A. V., & Moshynets, O. (2023). Femtosecond laser modified metal surfaces alter biofilm architecture and reduce bacterial biofilm formation. Nanoscale Advances, 5, 6659–6669. https://doi.org/10.1039/D3NA00599B
Gurau, L., Petru, A., Varodi, A., & Timar, M. C. (2017). The influence of CO₂ laser beam power output and scanning speed on surface roughness and colour changes of beech (Fagus sylvatica). BioResources, 12(4), 7395–7412.
Henriksen, N. G., Poulios, K., Somers, M. A. J., & Christiansen, T. L. (2023). Impact of laser marking on microstructure and fatigue life of medical grade titanium. Materials Science and Engineering A, 873, 145020. https://doi.org/10.1016/j.msea.2023.145020
Influence of surface treatment by laser irradiation on bacterial adhesion on surfaces of titanium and its alloys: Systematic review. (2023). [Journal title pending]. https://pubmed.ncbi.nlm.nih.gov/36942202/
Jang, Y. S., Kim, M., & Park, J. W. (2024). Surface modification of stainless and tool steels to improve antibacterial and sterilization efficiency for healthcare manufacturing. Surface and Coatings Technology, 484, 129502. https://doi.org/10.1016/j.surfcoat.2024.129502
Jerez-Mesa, R., Fargas, G., Roa, J. J., Llumà, J., & Travieso-Rodriguez, J. A. (2021). Superficial effects of ball burnishing on TRIP steel AISI 301LN sheets. Metals, 11(1), 82. https://doi.org/10.3390/met11010082
Jurčs, V., Tihomirova, K., & Abele, A. (2023). Influence of laser process parameters on surface roughness and microstructure during laser engraving of tool steels. Procedia CIRP, 119, 513–518. https://doi.org/10.1016/j.procir.2023.04.087
Kumar, A., Singh, D., & Jain, P. K. (2023). Experimental study of laser marking parameters on stainless steel for improved legibility and surface integrity. Optics & Laser Technology, 169, 110844. https://doi.org/10.1016/j.optlastec.2023.110844
Kuroda, S., Tanaka, M., & Fukuda, Y. (2024). Laser processing optimization of tool steels for high-precision and contamination-free manufacturing. Optics & Laser Technology, 173, 110173. https://doi.org/10.1016/j.optlastec.2024.110173
Laser Focus World. (2023). Lasers for medical device marking. https://www.laserfocusworld.com/industrial-laser-solutions/article/14215794/lasers-for-medical-device-marking
Lee, D. H., & Park, J. S. (2023). Experimental assessment of surface properties of laser-treated tool steels used in precision dies. Journal of Manufacturing Processes, 97, 51–59. https://doi.org/10.1016/j.jmapro.2023.06.007
Li, Z., Xu, T., & Chen, M. (2023). Surface microstructure and cleaning performance of laser-marked stainless steel for food and medical applications. Applied Surface Science, 617, 156703. https://doi.org/10.1016/j.apsusc.2023.156703
Nipu, S. A., Rahman, M. M., Al Noman, A., & Hossain, A. K. M. B. (2023). Turning SKD 11 hardened steel: An experimental study of surface roughness and material removal rate using Taguchi method. Advances in Materials Science and Engineering, 2023, 6421918. https://doi.org/10.1155/2023/6421918
Pandey, M., & Doloi, B. (2025). Parametric analysis of poly methyl methacrylate (PMMA) laser marking using fiber laser. Sādhanā, 50(2), 1–15. https://doi.org/10.1007/s12046-025-02714-0
Sales-Contini, N., Rossi, F., & Ghidini, T. (2023). Microstructural evaluation and roughness analysis of polymer composite parts after laser marking. Polymers, 15(6), 1378. https://doi.org/10.3390/polym15061378
Sales-Contini, R. C. M., et al. (2023). Influence of laser marking parameters on data matrix code quality on polybutylene terephthalate/glass fiber composite surface using microscopy and spectroscopy techniques. AIMS Materials Science, 11(1), 150–172. https://doi.org/10.3934/matersci.2024009
Trung, D. D. (2021). Multi-objective optimization of SKD11 steel milling process by reference ideal method. International Journal of Geology, 15(1), 1–16. https://doi.org/10.46300/9105.2021.15.1
Wang, H. C., Yu, T. T., & Peng, W. F. (2025). Defect detection and error source tracing in laser marking of silicon wafers with machine learning. Applied Sciences, 15(13), 1–11. https://doi.org/10.3390/app15137020
Xu, H., Zhang, R., & Chen, Y. (2024). Laser marking optimization and contamination control in medical device manufacturing: A sustainability perspective. Journal of Manufacturing Processes, 106, 432–441. https://doi.org/10.1016/j.jmapro.2024.06.012













